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Introduction / Abstract

We present a study of Kerr microcombs [1] generated by CW pumping of 

graphene-comprising silicon nitride waveguide ring resonators in the NIR [2]. 

Our resonator is designed to access the dissipative cavity soliton regime under the 

combined effect of defocusing nonlinearity from graphene and normal group velocity 

dispersion (GVD) from a slot waveguide, properly accounting for the wideband 

dispersion of all waveguide parameters. We then proceed to study the effect of 

non-perturbative graphene nonlinearity on comb formation and efficiency.
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Photonics

Graphene-comprising Si-based Waveguides & Resonators

Silicon-based integrated waveguides provide high lateral confinement:

✓ Miniaturization of footprint

✓ Boosting of nonlinear (NL) effects

Graphene can be incorporated in such 

waveguides to enhance them with:

✓ Electro-optic tunability

✓ Rich and voltage-tunable NL

▪ High 3rd-order (Kerr) response

▪ Saturable absorption 

Ultrafast NL functionalities
 Waveguide cross-section engineering

 Graphene quality and electrical tuning via its chemical potential (𝜇𝑐)

 Input pulse: power, duration, shape, chirp

Kerr micro-combs with graphene-comprising waveguide ring resonators (WRR)

▪ Traveling wave cavity with high 3rd-order nonlinearity

▪ Low losses (high 𝑄int) and critical coupling

▪ CW pumping with a (slow) frequency tuning
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Methods

Nonlinear Schrödinger Equation (NLSE)
 Pulse’s slowly varying envelope 𝐴 𝑧, 𝜏  distortion along 𝑧-waveguide

▪ Waveguide effective parameters: {𝛼, 𝛽, 𝛾NL} = {absorption, dispersion, Kerr-NL}

❖ 𝛿GNL(𝑧, 𝜏) = Graphene NL → Free-carrier effects (see GHEM)

𝜕𝐴

𝜕𝑧
= −

𝛼

2
+ 

𝑚=2

∞

𝑖𝑚+1
𝛽𝑚

𝑚!

𝜕

𝜕𝜏𝑚
+ 𝑖𝛾NL 𝐴 2 − 𝛿GNL 𝐴 = 𝐹NLSE(𝑧, 𝜏)𝐴

Lugiato-Lefever Equation (LLE)
 Total field evolution inside a pumped dispersive nonlinear cavity

▪ 𝐸 = 𝐸(𝑡slow, 𝜏fast): two-timescale representation

▪ Similar to NLSE with 𝑧 → 𝑡slow, but also driven ( 𝜃𝐸in) and detuned (𝑖𝛿0) 

▪ Other parameters: roundtrip time (𝑡𝑅 = 1/FSR), cavity length (𝐿), 

𝑡𝑅
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Split-step Fourier Method (SSFM)
 Solve NLSE or LLE: Each “step” in 𝑧 (NLSE) or 𝑡slow (LLE) is split in two

▪ Spectral (Fourier) domain: Linear terms, e.g., absorption and dispersion

▪ Time domain: nonlinear terms, Kerr and/or free-carrier effects

❖ In-step iterations (typically 2-5) for convergence and stability

General Methodology
▪ Maximize overlap of E-field (tangential) with graphene

▪ Dispersion of {𝛼, 𝛽, 𝛾NL} parameters → FEM mode solver

▪ GHEM [4]: Define effective parameters to relate Δ𝜎 1  to

pulse power and NL refraction and absorption/bleaching.

Graphene-based Kerr comb: The slot-waveguide
▪ Graphene nonlinearity is defocusing, 𝛾NL < 0
 For cavity soliton (Kerr combs): normal GVD<0

▪ Octave spanning around 1.55 μm (1.1 to 2.3 μm)

 Low-loss (transparency):  Si-nitride on insulator

❑ Waveguide: 800 nm × 500 nm SiN rails; 50 nm air-slot

Graphene Tuning
▪ Identify optimal graphene-monolayer chemical potential (𝜇𝑐)

 Frequency dispersion of w/g parameters {𝛼, 𝛽, 𝛾NL} using 𝜎 3 (𝜆, 𝜇𝑐 , 300 K) [3]

Material: Graphene Nonlinearity

Equilibrium: Carrier temperature = lattice temperature (𝑇)

▪ Perturbative 3rd order NL response [3] → Computation of 𝜎 3 = 𝜎 3 (𝜆, 𝜇𝑐 , 𝑇)

Non-equilibrium: Graphene “hot electron” model (GHEM) [4]

▪ Fermi-Dirac electrodynamic microscopic model → Non-perturbative

▪ Complex photoconductivity Δ𝜎 1 = 𝜎NL
1

− 𝜎lin
1

: from photogenerated free-carrier 

(plasma) density and energy, and graphene conductivity (Kubo formulas)

➢ Depends on 𝜆, 𝜇𝑐 , 𝑇 , input power (intensity), and GHEM lifetimes

Conclusions & Outlook

Graphene provides 

the nonlinearity for 

Kerr comb generation

✓ Kerr combs can be generated in graphene-comprising WRRs

❖ Stability vs. pump power & detuning and vs. graphene’s 𝜇𝑐

✓ Dissipative cavity solitons originate from graphene’s nonlinear Im{𝜎 3 }
❖ Full dispersion included, for the perturbative regime [3]

✓ Voltage tuning on graphene (𝜇𝑐) can control the comb through…

▪ Absorption: Re 𝜎 1 → 𝛼 → 𝑄int

▪ Refractive NL: Im 𝜎 3 → 𝛾NL

❖ In [2] graphene voltage tuning affected dispersion, not nonlinearity

 High cavity powers → graphene non-perturbative NL regime (GHEM) [4]

Simulation Results: Kerr Comb Generation

Waveguide resonator and pumping laser
▪ CW laser pumping near 193 THz (1.55 μm) resonance

➢ Power: 𝐸in
2 ≈ 10 W 

➢ Detuning range (speed):  −10 → +50 GHz (~ 0.9 GHz/ns)

▪  Cavity length 𝐿 = 100 μm → Roundtrip time: 𝑡𝑅 ~ 0.67 ps →  FSR ~ 1.48 THz

▪ Graphene chemical potential 𝜇𝑐 ~ 0.5 eV for 1.55 μm (see cross in figs above)

▪ 𝑄ext ~ 3.6 ×104 (no dispersion) for critical coupling near 193 THz

𝜆 = 1.55 μm

Four regimes: (1) modulation instability [MI] “Turing rolls”, (2) MI chaos, (3) unstable soliton “breathers”, (4) stable solitons.
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